Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cells ; 13(2)2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38247876

RESUMO

Cystic Fibrosis (CF) is present due to mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene, the most frequent variant being p.phe508del. The CFTR protein is a chloride (Cl-) channel which is defective and almost absent of cell membranes when the p.Phe508del mutation is present. The p.Phe508del-CFTR protein is retained in the endoplasmic reticulum (ER) and together with inflammation and infection triggers the Unfolded Protein Response (UPR). During the UPR, the Activating Transcription Factor 6 (ATF6) is activated with cleavage and then decreases the expression of p.Phe508del-CFTR. We have previously shown that the inhibition of the activation of ATF6 alleviates the p.Phe508del-CFTR defects in cells overexpressing the mutated protein. In the present paper, our aim was to inhibit the cleavage of ATF6, and thus its activation in a human bronchial cell line with endogenous p.Phe508del-CFTR expression and in bronchial cells from patients, to be more relevant to CF. This was achieved by inhibiting the protease MBTP1 which is responsible for the cleavage of ATF6. We show here that this inhibition leads to increased mRNA and p.Phe508del-CFTR expression and, consequently, to increased Cl-efflux. We also explain the mechanisms linked to these increases with the modulation of genes when MBTP1 is inhibited. Indeed, RT-qPCR assays show that genes such as HSPA1B, CEBPB, VIMP, PFND2, MAPK8, XBP1, INSIG1, and CALR are modulated. In conclusion, we show that the inhibition of MBTP1 has a beneficial effect in relevant models to CF and that this is due to the modulation of genes involved in the disease.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Pró-Proteína Convertases , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Fatores de Transcrição , Serina Endopeptidases
2.
Pancreatology ; 23(5): 507-511, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37270400

RESUMO

Mutations in the PNLIP gene have recently been implicated in chronic pancreatitis. Several PNLIP missense variants have been reported to cause protein misfolding and endoplasmic reticulum stress although genetic evidence supporting their association with chronic pancreatitis is currently lacking. Protease-sensitive PNLIP missense variants have also been associated with early-onset chronic pancreatitis although the underlying pathological mechanism remains enigmatic. Herein, we provide new evidence to support the association of protease-sensitive PNLIP variants (but not misfolding PNLIP variants) with pancreatitis. Specifically, we identified protease-sensitive PNLIP variants in 5 of 373 probands (1.3%) with a positive family history of pancreatitis. The protease-sensitive variants, p.F300L and p.I265R, were found to segregate with the disease in three families, including one exhibiting a classical autosomal dominant inheritance pattern. Consistent with previous findings, protease-sensitive variant-positive patients were often characterized by early-onset disease and invariably experienced recurrent acute pancreatitis, although none has so far developed chronic pancreatitis.


Assuntos
Lipase , Pancreatite Crônica , Peptídeo Hidrolases , Humanos , Doença Aguda , Mutação , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Peptídeo Hidrolases/genética , Lipase/genética
4.
Hum Mutat ; 43(12): 2308-2323, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273432

RESUMO

Modeling splicing is essential for tackling the challenge of variant interpretation as each nucleotide variation can be pathogenic by affecting pre-mRNA splicing via disruption/creation of splicing motifs such as 5'/3' splice sites, branch sites, or splicing regulatory elements. Unfortunately, most in silico tools focus on a specific type of splicing motif, which is why we developed the Splicing Prediction Pipeline (SPiP) to perform, in one single bioinformatic analysis based on a machine learning approach, a comprehensive assessment of the variant effect on different splicing motifs. We gathered a curated set of 4616 variants scattered all along the sequence of 227 genes, with their corresponding splicing studies. The Bayesian analysis provided us with the number of control variants, that is, variants without impact on splicing, to mimic the deluge of variants from high-throughput sequencing data. Results show that SPiP can deal with the diversity of splicing alterations, with 83.13% sensitivity and 99% specificity to detect spliceogenic variants. Overall performance as measured by area under the receiving operator curve was 0.986, better than SpliceAI and SQUIRLS (0.965 and 0.766) for the same data set. SPiP lends itself to a unique suite for comprehensive prediction of spliceogenicity in the genomic medicine era. SPiP is available at: https://sourceforge.net/projects/splicing-prediction-pipeline/.


Assuntos
Sítios de Splice de RNA , Splicing de RNA , Humanos , Teorema de Bayes , Splicing de RNA/genética , Éxons/genética , Sítios de Splice de RNA/genética , Aprendizado de Máquina , Íntrons/genética
5.
J Inherit Metab Dis ; 45(5): 996-1012, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35621276

RESUMO

Mitochondrial complex V plays an important role in oxidative phosphorylation by catalyzing the generation of ATP. Most complex V subunits are nuclear encoded and not yet associated with recognized Mendelian disorders. Using exome sequencing, we identified a rare homozygous splice variant (c.87+3A>G) in ATP5PO, the complex V subunit which encodes the oligomycin sensitivity conferring protein, in three individuals from two unrelated families, with clinical suspicion of a mitochondrial disorder. These individuals had a similar, severe infantile and often lethal multi-systemic disorder that included hypotonia, developmental delay, hypertrophic cardiomyopathy, progressive epileptic encephalopathy, progressive cerebral atrophy, and white matter abnormalities on brain MRI consistent with Leigh syndrome. cDNA studies showed a predominant shortened transcript with skipping of exon 2 and low levels of the normal full-length transcript. Fibroblasts from the affected individuals demonstrated decreased ATP5PO protein, defective assembly of complex V with markedly reduced amounts of peripheral stalk proteins, and complex V hydrolytic activity. Further, expression of human ATP5PO cDNA without exon 2 (hATP5PO-∆ex2) in yeast cells deleted for yATP5 (ATP5PO homolog) was unable to rescue growth on media which requires oxidative phosphorylation when compared to the wild type construct (hATP5PO-WT), indicating that exon 2 deletion leads to a non-functional protein. Collectively, our findings support the pathogenicity of the ATP5PO c.87+3A>G variant, which significantly reduces but does not eliminate complex V activity. These data along with the recent report of an affected individual with ATP5PO variants, add to the evidence that rare biallelic variants in ATP5PO result in defective complex V assembly, function and are associated with Leigh syndrome.


Assuntos
Encefalopatias , Doença de Leigh , ATPases Mitocondriais Próton-Translocadoras , Encefalopatias/metabolismo , DNA Complementar/metabolismo , Humanos , Doença de Leigh/genética , Doença de Leigh/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação , Proteínas/metabolismo
6.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203920

RESUMO

The negatively charged Asp325 residue has proved to be essential for iron export by human (HsFPN1) and primate Philippine tarsier (TsFpn) ferroportin, but its exact role during the iron transport cycle is still to be elucidated. It has been posited as being functionally equivalent to the metal ion-coordinating residue His261 in the C-lobe of the bacterial homolog BbFpn, but the two residues arise in different sequence motifs of the discontinuous TM7 transmembrane helix. Furthermore, BbFpn is not subject to extracellular regulation, contrary to its mammalian orthologues which are downregulated by hepcidin. To get further insight into the molecular mechanisms related to iron export in mammals in which Asp325 is involved, we investigated the behavior of the Asp325Ala, Asp325His, and Asp325Asn mutants in transiently transfected HEK293T cells, and performed a comparative structural analysis. Our biochemical studies clearly distinguished between the Asp325Ala and Asp325His mutants, which result in a dramatic decrease in plasma membrane expression of FPN1, and the Asp325Asn mutant, which alters iron egress without affecting protein localization. Analysis of the 3D structures of HsFPN1 and TsFpn in the outward-facing (OF) state indicated that Asp325 does not interact directly with metal ions but is involved in the modulation of Cys326 metal-binding capacity. Moreover, models of the architecture of mammalian proteins in the inward-facing (IF) state suggested that Asp325 may form an inter-lobe salt-bridge with Arg40 (TM1) when not interacting with Cys326. These findings allow to suggest that Asp325 may be important for fine-tuning iron recognition in the C-lobe, as well as for local structural changes during the IF-to-OF transition at the extracellular gate level. Inability to form a salt-bridge between TM1 and TM7b during iron translocation could lead to protein instability, as shown by the Asp325Ala and Asp325His mutants.


Assuntos
Ácido Aspártico/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Sítios de Ligação , Transporte Biológico , Membrana Celular/metabolismo , Células HEK293 , Humanos , Ferro/metabolismo , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
7.
Transfusion ; 61(8): 2468-2476, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34110623

RESUMO

BACKGROUND: Although D variant phenotype is known to be due to genetic defects, including rare missense single nucleotide variants (SNVs), within the RHD gene, few studies have addressed the molecular and cellular mechanisms driving this altered expression. We and others showed previously that splicing is commonly disrupted by SNVs in constitutive splice sites and their vicinity. We thus sought to investigate whether rare missense SNVs located in "deep" exonic regions could also impair this mechanism. STUDY DESIGN AND METHODS: Forty-six missense SNVs reported within exons 6 and 7 were first selected from the Human RhesusBase. Their respective effect on splicing was assessed by using an in vitro assay. An RhD-negative cell model was further generated by using the CRISPR-Cas9 approach. RhD-mutated proteins were overexpressed in the newly created model, and cell membrane expression of the D antigen was measured by flow cytometry. RESULTS: Minigene splicing assay showed that 14 of 46 (30.4%) missense SNVs alter splicing. Very interestingly, further investigation of two missense SNVs, which both affect codon 338 and confer a weak D phenotype, showed various mechanisms: c.1012C>G (p.Leu338Val) disrupts splicing only, while c.1013T>C (p.Leu338Pro) alters only the protein structure, in agreement with in silico prediction tools and 3D protein structure visualization. CONCLUSION: Our functional data set suggests that missense SNVs damage quantitatively D antigen expression by, at least, two different mechanisms (splicing alteration and protein destabilization) that may act independently. These data thereby contribute to extend the current knowledge of the molecular mechanisms governing weakened D expression.


Assuntos
Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Sistema do Grupo Sanguíneo Rh-Hr/genética , Expressão Gênica , Humanos , Células K562 , Modelos Moleculares , Splicing de RNA , Sistema do Grupo Sanguíneo Rh-Hr/química
8.
Blood Cells Mol Dis ; 87: 102527, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33341511

RESUMO

Hemochromatosis type 4, or ferroportin disease, is considered as the second leading cause of primary iron overload after HFE-related hemochromatosis. The disease, which is predominantly associated with missense variations in the SLC40A1 gene, is characterized by wide clinical heterogeneity. We tested the possibility that some of the reported missense mutations, despite their positions within exons, cause splicing defects. Fifty-eight genetic variants were selected from the literature based on two criteria: a precise description of the nucleotide change and individual evidence of iron overload. The selected variants were investigated by different in silico prediction tools and prioritized for midigene splicing assays. Of the 15 variations tested in vitro, only two were associated with splicing changes. We confirm that the c.1402G>A transition (p.Gly468Ser) disrupts the exon 7 donor site, leading to the use of an exonic cryptic splicing site and the generation of a truncated reading frame. We observed, for the first time, that the p.Gly468Ser substitution has no effect on the ferroportin iron export function. We demonstrate alternative splicing of exon 5 in different cell lines and show that the c.430A>G (p.Asn144Asp) variant promotes exon 5 inclusion. This could be part of a gain-of-function mechanism. We conclude that splicing mutations rarely contribute to hemochromatosis type 4 phenotypes. An in-depth investigation of exon 5 auxiliary splicing sequences may help to elucidate the mechanism by which splicing regulatory proteins regulate the production of the full length SLC40A1 transcript and to clarify its physiological importance.


Assuntos
Processamento Alternativo , Proteínas de Transporte de Cátions/deficiência , Hemocromatose/genética , Mutação de Sentido Incorreto , Proteínas de Transporte de Cátions/genética , Éxons , Genômica , Células Hep G2 , Humanos , Polimorfismo de Nucleotídeo Único
9.
Ann Clin Transl Neurol ; 7(9): 1574-1579, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33245593

RESUMO

OBJECTIVE: To identify the genetic cause in an adult ovarioleukodystrophy patient resistant to diagnosis. METHODS: We applied whole-exome sequencing (WES) to a vanishing white matter disease patient associated with premature ovarian failure at 26 years of age. We functionally tested an intronic variant by RT-PCR on patient's peripheral blood mononuclear cells (PBMC) and by minigene splicing assay. RESULTS: WES analysis identified two novel variants in the EIF2B5 gene: c.725A > G (p.Tyr242Cys) and an intronic noncanonical mutation (c.1156 + 13G>A). This intronic mutation resulted into generation of various isoforms both in patient's PBMC and in the minigene splicing assay, showing that ~20% residual wild-type isoform is still expressed by the intronic-mutated allele alone, concordant with an hypomorphic effect of this variant. CONCLUSION: We report two novel variants in EIF2B5, one of them a noncanonical intronic splice variant, located at a +13 intronic position. This position is mutated only in 0.05% of ClinVar intronic mutations described so far. Furthermore, we illustrate how minigene splicing assay may be advantageous when validating splice-altering variants, in this case highlighting the coexistence of wild-type and mutated forms, probably explaining this patient's milder, late-onset phenotype.


Assuntos
Fator de Iniciação 2B em Eucariotos/genética , Leucoencefalopatias/diagnóstico , Leucoencefalopatias/genética , Doenças Ovarianas/diagnóstico , Doenças Ovarianas/genética , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Sequenciamento do Exoma
11.
Mol Biol Rep ; 47(4): 3031-3040, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32200451

RESUMO

We previously reported a 40-transcripts signature marking the normal mucosa to colorectal adenocarcinoma transition. Eight of these mRNAs also showed splicing alterations, including a specific intron 3 retention in tissue metalloprotease inhibitor I (TIMP1), which decreased during the early steps of colorectal cancer progression. To decipher the mechanism of intron 3 retention/splicing, we first searched for putative RNA binding protein binding sites onto the TIMP1 sequence. We identified potential serine arginine rich splicing factor 1 (SRSF1) and heterogeneous nuclear RiboNucleoProtein A1 (hnRNPA1) binding sites at the end of intron 3 and the beginning of exon 4, respectively. RNA immunoprecipitation showed that hnRNPA1, but not SRSF1 could bind to the corresponding region in TIMP1 pre-mRNA in live cells. Furthermore, using a TIMP1-based ex vivo minigene approach, together with a plasmon resonance in vitro RNA binding assay, we confirmed that hnRNPA1 could indeed bind to wild type TIMP1 exon 4 pre-mRNA and control TMP1 intron 3 splicing, the interaction being abolished in presence of a mutant sequence that disrupted this site. These results indicated that hnRNPA1, upon binding to TIMP1 exon 4, was a positive regulator of intron 3 splicing. We propose that this TIMP1-intron 3 + transcript belongs to the class of nuclear transcripts with "detained" introns, an abundant molecular class, including in cancer.


Assuntos
Neoplasias do Colo/genética , Ribonucleoproteína Nuclear Heterogênea A1/genética , Inibidor Tecidual de Metaloproteinase-1/genética , Processamento Alternativo , Sítios de Ligação/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias do Colo/metabolismo , Éxons , Células HCT116 , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Humanos , Íntrons , Ligação Proteica/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo
12.
J Med Genet ; 57(10): 708-716, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32161152

RESUMO

BACKGROUND: Multiple morphological abnormalities of the flagella (MMAF) consistently lead to male infertility due to a reduced or absent sperm motility defined as asthenozoospermia. Despite numerous genes recently described to be recurrently associated with MMAF, more than half of the cases analysed remain unresolved, suggesting that many yet uncharacterised gene defects account for this phenotype METHODS: Exome sequencing was performed on 167 infertile men with an MMAF phenotype. Immunostaining and transmission electron microscopy (TEM) in sperm cells from affected individuals were performed to characterise the ultrastructural sperm defects. Gene inactivation using RNA interference (RNAi) was subsequently performed in Trypanosoma. RESULTS: We identified six unrelated affected patients carrying a homozygous deleterious variants in MAATS1, a gene encoding CFAP91, a calmodulin-associated and spoke-associated complex (CSC) protein. TEM and immunostaining experiments in sperm cells showed severe central pair complex (CPC) and radial spokes defects. Moreover, we confirmed that the WDR66 protein is a physical and functional partner of CFAP91 into the CSC. Study of Trypanosoma MAATS1's orthologue (TbCFAP91) highlighted high sequence and structural analogies with the human protein and confirmed the axonemal localisation of the protein. Knockdown of TbCFAP91 using RNAi impaired flagellar movement led to CPC defects in Trypanosoma as observed in humans. CONCLUSIONS: We showed that CFAP91 is essential for normal sperm flagellum structure and function in human and Trypanosoma and that biallelic variants in this gene lead to severe flagellum malformations resulting in astheno-teratozoospermia and primary male infertility.


Assuntos
Anormalidades Múltiplas/genética , Astenozoospermia/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte/genética , Infertilidade Masculina/genética , Anormalidades Múltiplas/patologia , Animais , Astenozoospermia/patologia , Axonema/genética , Axonema/ultraestrutura , Homozigoto , Humanos , Infertilidade Masculina/patologia , Masculino , Mutação/genética , Motilidade dos Espermatozoides/genética , Cauda do Espermatozoide/metabolismo , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Espermatozoides/patologia , Espermatozoides/ultraestrutura , Trypanosoma/genética , Sequenciamento do Exoma
13.
BMC Genomics ; 21(1): 86, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992191

RESUMO

BACKGROUND: Branch points (BPs) map within short motifs upstream of acceptor splice sites (3'ss) and are essential for splicing of pre-mature mRNA. Several BP-dedicated bioinformatics tools, including HSF, SVM-BPfinder, BPP, Branchpointer, LaBranchoR and RNABPS were developed during the last decade. Here, we evaluated their capability to detect the position of BPs, and also to predict the impact on splicing of variants occurring upstream of 3'ss. RESULTS: We used a large set of constitutive and alternative human 3'ss collected from Ensembl (n = 264,787 3'ss) and from in-house RNAseq experiments (n = 51,986 3'ss). We also gathered an unprecedented collection of functional splicing data for 120 variants (62 unpublished) occurring in BP areas of disease-causing genes. Branchpointer showed the best performance to detect the relevant BPs upstream of constitutive and alternative 3'ss (99.48 and 65.84% accuracies, respectively). For variants occurring in a BP area, BPP emerged as having the best performance to predict effects on mRNA splicing, with an accuracy of 89.17%. CONCLUSIONS: Our investigations revealed that Branchpointer was optimal to detect BPs upstream of 3'ss, and that BPP was most relevant to predict splicing alteration due to variants in the BP area.


Assuntos
Íntrons , Precursores de RNA , Sítios de Splice de RNA , Splicing de RNA , Processamento Alternativo , Biologia Computacional/métodos , Humanos , Motivos de Nucleotídeos , Matrizes de Pontuação de Posição Específica , Processamento Pós-Transcricional do RNA , Curva ROC , Reprodutibilidade dos Testes
15.
FASEB J ; 33(12): 14625-14635, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31690120

RESUMO

Ferroportin 1 (FPN1) is a major facilitator superfamily transporter that is essential for proper maintenance of human iron homeostasis at the systemic and cellular level. FPN1 dysfunction leads to the progressive accumulation of iron in reticuloendothelial cells, causing hemochromatosis type 4A (or ferroportin disease), an autosomal dominant disorder that displays large phenotypic heterogeneity. Although crystal structures have unveiled the outward- and inward-facing conformations of the bacterial homolog Bdellovibrio bacteriovorus Fpn (or Bd2019) and calcium has recently been identified as an essential cofactor, our molecular understanding of the iron transport mechanism remains incomplete. Here, we used a combination of molecular modeling, molecular dynamics simulations, and Ala site-directed mutagenesis, followed by complementary in vitro functional analyses, to explore the structural architecture of the human FPN1 intracellular gate. We reveal an interdomain network that involves 5 key amino acids and is likely very important for stability of the iron exporter facing the extracellular milieu. We also identify inter- and intradomain interactions that rely on the 2 Asp84 and Asn174 critical residues and do not exist in the bacterial homolog. These interactions are thought to play an important role in the modulation of conformational changes during the transport cycle. We interpret these results in the context of hemochromatosis type 4A, reinforcing the idea that different categories of loss-of-function mutations exist. Our findings provide an unprecedented view of the human FPN1 outward-facing structure and the particular function of the so-called "gating residues" in the mechanism of iron export.-Guellec, J., Elbahnsi, A., Le Tertre, M., Uguen, K., Gourlaouen, I., Férec, C., Ka, C., Callebaut, I., Le Gac, G. Molecular model of the ferroportin intracellular gate and implications for the human iron transport cycle and hemochromatosis type 4A.


Assuntos
Proteínas de Transporte de Cátions/deficiência , Hemocromatose/genética , Simulação de Dinâmica Molecular , Mutação , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Células HEK293 , Humanos , Ferro/metabolismo , Domínios Proteicos
16.
Hum Mutat ; 40(10): 1856-1873, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31131953

RESUMO

It has long been known that canonical 5' splice site (5'SS) GT>GC variants may be compatible with normal splicing. However, to date, the actual scale of canonical 5'SSs capable of generating wild-type transcripts in the case of GT>GC substitutions remains unknown. Herein, combining data derived from a meta-analysis of 45 human disease-causing 5'SS GT>GC variants and a cell culture-based full-length gene splicing assay of 103 5'SS GT>GC substitutions, we estimate that ~15-18% of canonical GT 5'SSs retain their capacity to generate between 1% and 84% normal transcripts when GT is substituted by GC. We further demonstrate that the canonical 5'SSs in which substitution of GT by GC-generated normal transcripts exhibit stronger complementarity to the 5' end of U1 snRNA than those sites whose substitutions of GT by GC did not lead to the generation of normal transcripts. We also observed a correlation between the generation of wild-type transcripts and a milder than expected clinical phenotype but found that none of the available splicing prediction tools were capable of reliably distinguishing 5'SS GT>GC variants that generated wild-type transcripts from those that did not. Our findings imply that 5'SS GT>GC variants in human disease genes may not invariably be pathogenic.


Assuntos
Processamento Alternativo , Sequência de Bases , Regulação da Expressão Gênica , Variação Genética , Sítios de Splice de RNA , Células Cultivadas , Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Éxons , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Íntrons , Motivos de Nucleotídeos , Matrizes de Pontuação de Posição Específica , Análise de Sequência de DNA
17.
Transfusion ; 59(4): 1367-1375, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30811032

RESUMO

BACKGROUND: We previously showed that several variations in the RHD gene, including synonymous changes, can be classified as splice site variants and may play a direct role in D variant phenotype expression. We sought to extend our study to additional candidates, notably in the first and last exons of the gene, by engineering a novel universal splice reporting vector, i.e., minigene. STUDY DESIGN AND METHODS: Our previous plasmid construct was modified to allow subcloning of any exon(s) of interest for assessing effect of variations on splicing. Seventeen novel and/or uncharacterized variations of the RHD gene were selected for the study and tested in our novel model. RESULTS: We engineered and validated a novel universal minigene for assessing virtually any variations of interest for splicing defect. Of the 17 variants tested in the novel model, 11 were shown to alter splicing either totally or partially, including the silent c.1065C>T variation, which induces major skipping of exon 7, and may therefore be responsible for reducing D antigen expression. We also showed that while all three missense variations c.1154G>C, c.1154G>T, and c.1154G>A in exon 9 are splice site variants, splicing is differentially altered and D-negative phenotype observed in the presence of the latter substitution is likely due to a defect in RhD protein folding. CONCLUSION: Overall, we hypothesize that splicing alteration is likely to be a common mechanism of D phenotype variation that has been underestimated so far. Further large-scale studies are necessary to demonstrate this statement definitely.


Assuntos
Éxons , Modelos Biológicos , Mutação de Sentido Incorreto , Sítios de Splice de RNA , Splicing de RNA , Sistema do Grupo Sanguíneo Rh-Hr , Mutação Silenciosa , Linhagem Celular , Humanos , Sistema do Grupo Sanguíneo Rh-Hr/biossíntese , Sistema do Grupo Sanguíneo Rh-Hr/genética
19.
Haematologica ; 103(11): 1796-1805, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30002125

RESUMO

Hemochromatosis type 4 is one of the most common causes of primary iron overload, after HFE-related hemochromatosis. It is an autosomal dominant disorder, primarily due to missense mutations in SLC40A1 This gene encodes ferroportin 1 (FPN1), which is the sole iron export protein reported in mammals. Not all heterozygous missense mutations in SLC40A1 are disease-causing. Due to phenocopies and an increased demand for genetic testing, rare SLC40A1 variations are fortuitously observed in patients with a secondary cause of hyperferritinemia. Structure/function analysis is the most effective way of establishing causality when clinical and segregation data are lacking. It can also provide important insights into the mechanism of iron egress and FPN1 regulation by hepcidin. The present study aimed to determine the pathogenicity of the previously reported p.Arg178Gln variant. We present the biological, clinical, histological and radiological findings of 22 patients from six independent families of French, Belgian or Iraqi decent. Despite phenotypic variability, all patients with p.Arg178Gln had elevated serum ferritin concentrations and normal to low transferrin saturation levels. In vitro experiments demonstrated that the p.Arg178Gln mutant reduces the ability of FPN1 to export iron without causing protein mislocalization. Based on a comparative model of the 3D structure of human FPN1 in an outward facing conformation, we argue that p.Arg178 is part of an interaction network modulating the conformational changes required for iron transport. We conclude that p.Arg178Gln represents a new category of loss-of-function mutations and that the study of "gating residues" is necessary in order to fully understand the action mechanism of FPN1.


Assuntos
Proteínas de Transporte de Cátions , Ferritinas/sangue , Hemocromatose , Mutação com Perda de Função , Mutação de Sentido Incorreto , Adolescente , Adulto , Idoso , Substituição de Aminoácidos , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Criança , Família , Feminino , Hemocromatose/sangue , Hemocromatose/genética , Hemocromatose/patologia , Humanos , Masculino , Pessoa de Meia-Idade
20.
Nucleic Acids Res ; 46(15): 7913-7923, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-29750258

RESUMO

Variant interpretation is the key issue in molecular diagnosis. Spliceogenic variants exemplify this issue as each nucleotide variant can be deleterious via disruption or creation of splice site consensus sequences. Consequently, reliable in silico prediction of variant spliceogenicity would be a major improvement. Thanks to an international effort, a set of 395 variants studied at the mRNA level and occurring in 5' and 3' consensus regions (defined as the 11 and 14 bases surrounding the exon/intron junction, respectively) was collected for 11 different genes, including BRCA1, BRCA2, CFTR and RHD, and used to train and validate a new prediction protocol named Splicing Prediction in Consensus Elements (SPiCE). SPiCE combines in silico predictions from SpliceSiteFinder-like and MaxEntScan and uses logistic regression to define optimal decision thresholds. It revealed an unprecedented sensitivity and specificity of 99.5 and 95.2%, respectively, and the impact on splicing was correctly predicted for 98.8% of variants. We therefore propose SPiCE as the new tool for predicting variant spliceogenicity. It could be easily implemented in any diagnostic laboratory as a routine decision making tool to help geneticists to face the deluge of variants in the next-generation sequencing era. SPiCE is accessible at (https://sourceforge.net/projects/spicev2-1/).


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Variação Genética , Sítios de Splice de RNA/genética , Splicing de RNA , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Feminino , Humanos , Cooperação Internacional , Internet , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...